Study2_Statistics Trials S1 vs. S2+S3 pooled PXpi on DisX_T1-T2
Data loading & cleaning
data <- read.csv2("Study2_Data_a.csv", stringsAsFactors = FALSE)

---- normalisation colonnes & types ----
data <- data %>%
 mutate(
 Binome = as.character(Binome), # B1..B45
 Trial = as.character(Trial), # E1..E5
 Instruction = toupper(str_squish(as.character(Instruction))), # D / G
 Session = toupper(str_squish(as.character(Session))), # S1..S4
 Subject = toupper(str_squish(as.character(Subject))), # A/B/C
 Task = toupper(str_squish(as.character(Task))), # T1/T2/T3
 Bias = suppressWarnings(as.integer(as.character(Bias))),# 20 / 30
 DisX = suppressWarnings(as.numeric(gsub(",", ".", as.character(DisX)))),
 PXpi = suppressWarnings(as.numeric(gsub(",", ".", as.character(PXpi))))
) %>%
 filter(Session %in% c("S1","S2","S3"),
 Instruction %in% c("R","L"),
 Task %in% c("T1","T2","T3"),
 Bias %in% c(20L,30L)) %>%

 mutate(
 # === crée Session2 ICI, dans 'data' ===
 Session2 = case_when(
 Session == "S1" ~ "S1",
 Session %in% c("S2","S3") ~ "S2S3",
 TRUE ~ NA_character_
)
) %>%
 filter(!is.na(Session2)) %>%
 droplevels()
Trial-level weighted means → Dyad-level means
Weighted average by TEST (weight = PXpi). If sum(PXpi)==0, wmean_DisX=NA for this test.
trial_means <- data %>%
 group_by(Binome, Task, Bias, Instruction, Session2, Trial) %>%
 summarise(
 wsum = sum(PXpi, na.rm = TRUE),
 wmean_DisX = ifelse(wsum > 0, sum(DisX * PXpi, na.rm = TRUE) / wsum, NA_real_),
 .groups = "drop"
)

Aggregation by DYAD (weighted by the total PXpi mass of the test, wsum)
dyad_means <- trial_means %>%
 group_by(Binome, Task, Bias, Instruction, Session2) %>%
 summarise(
 n_trials = n(), # observed trials (including flat)
 n_trials_wpos = sum(!is.na(wmean_DisX)), # ests with wsum>0 (usable)
 total_wsum = sum(wsum, na.rm = TRUE),
 wmean_dyad = ifelse(sum(wsum, na.rm = TRUE) > 0,
 weighted.mean(wmean_DisX, w = ifelse(is.na(wmean_DisX), 0, wsum), na.rm = TRUE),
 NA_real_),
 .groups = "drop"
)

Large: columns S1 / S2S3
dyad_wide <- dyad_means %>%
 select(Binome, Task, Bias, Instruction, Session2, wmean_dyad) %>%
 pivot_wider(names_from = Session2, values_from = wmean_dyad)

knitr::kable(head(dyad_wide, 10), caption = "Overview of weighted averages by dyad (S1 vs. S2S3)")
Overview of weighted averages by dyad (S1 vs. S2S3)
	Binome
	Task
	Bias
	Instruction
	S1
	S2S3

	B1
	T1
	30
	L
	-21.961326
	-36.48449

	B1
	T1
	30
	R
	80.187266
	55.91722

	B1
	T2
	30
	L
	-40.695652
	-32.46667

	B1
	T2
	30
	R
	32.867528
	77.20466

	B10
	T1
	20
	L
	-6.684783
	35.95238

	B10
	T1
	20
	R
	2.375169
	874.13991

	B10
	T2
	20
	L
	36.850192
	139.38144

	B10
	T2
	20
	R
	NA
	165.50000

	B11
	T1
	30
	L
	35.578113
	-12.26691

	B11
	T1
	30
	R
	-1.810089
	29.59028

Diagnostic: dyads retained by condition (before test)
diag_counts <- dyad_means %>%
 group_by(Task, Bias, Instruction, Session2) %>%
 summarise(
 n_dyads_total = n_distinct(Binome),
 n_dyads_with_data = n_distinct(Binome[!is.na(wmean_dyad)]),
 .groups = "drop"
) %>%
 arrange(Task, Bias, Instruction, Session2)

knitr::kable(diag_counts, caption = "Diagnostic — Dyads per condition and session (total vs usable)")
Diagnostic — Dyads per condition and session (total vs usable)
	Task
	Bias
	Instruction
	Session2
	n_dyads_total
	n_dyads_with_data

	T1
	20
	L
	S1
	22
	21

	T1
	20
	L
	S2S3
	22
	22

	T1
	20
	R
	S1
	22
	22

	T1
	20
	R
	S2S3
	22
	22

	T1
	30
	L
	S1
	23
	23

	T1
	30
	L
	S2S3
	23
	23

	T1
	30
	R
	S1
	23
	22

	T1
	30
	R
	S2S3
	23
	23

	T2
	20
	L
	S1
	22
	20

	T2
	20
	L
	S2S3
	22
	21

	T2
	20
	R
	S1
	22
	19

	T2
	20
	R
	S2S3
	22
	22

	T2
	30
	L
	S1
	23
	19

	T2
	30
	L
	S2S3
	23
	23

	T2
	30
	R
	S1
	23
	18

	T2
	30
	R
	S2S3
	23
	23

Directional Wilcoxon (paired by dyad): S2S3 − S1
We test S2S3 − S1 by dyad (paired), unilateral :
D ⇒ alternative = "greater" ; G ⇒ alternative = "less"
wilcoxon_results <- dyad_wide %>%
 filter(!is.na(S1) & !is.na(S2S3)) %>% # You can only compare if Dyade has both sessions
 group_by(Task, Bias, Instruction) %>%
 summarise(
 n_pairs = n(),
 median_diff = median(S2S3 - S1, na.rm = TRUE),
 W = {
 x <- S2S3 - S1
 alt <- if (unique(Instruction) == "R") "greater" else "less"
 suppressWarnings(wilcox.test(x, alternative = alt, exact = FALSE)$statistic)
 },
 p_value = {
 x <- S2S3 - S1
 alt <- if (unique(Instruction) == "R") "greater" else "less"
 suppressWarnings(wilcox.test(x, alternative = alt, exact = FALSE)$p.value)
 },
 .groups = "drop"
) %>%
 mutate(
 Direction = ifelse(Instruction == "R", "Expected > 0", "Expected < 0"),
 p_fmt = case_when(
 is.na(p_value) ~ "NA",
 p_value < 1e-16 ~ "< 2e-16",
 TRUE ~ formatC(p_value, format = "f", digits = 4)
)
) %>%
 arrange(Task, Bias, Instruction)

knitr::kable(wilcoxon_results, digits = 3,
 caption = "Directional Wilcoxon (paired by dyad) on S2S3 − S1 (no positional filtering)")
Directional Wilcoxon (paired by dyad) on S2S3 − S1 (no positional filtering)
	Task
	Bias
	Instruction
	n_pairs
	median_diff
	W
	p_value
	Direction
	p_fmt

	T1
	20
	L
	21
	-48.240
	53
	0.016
	Expected < 0
	0.0156

	T1
	20
	R
	22
	37.724
	189
	0.022
	Expected > 0
	0.0221

	T1
	30
	L
	23
	-31.002
	52
	0.005
	Expected < 0
	0.0047

	T1
	30
	R
	22
	15.752
	172
	0.072
	Expected > 0
	0.0720

	T2
	20
	L
	19
	-80.316
	41
	0.016
	Expected < 0
	0.0157

	T2
	20
	R
	19
	108.498
	148
	0.017
	Expected > 0
	0.0173

	T2
	30
	L
	19
	-37.740
	29
	0.004
	Expected < 0
	0.0042

	T2
	30
	R
	18
	74.436
	145
	0.005
	Expected > 0
	0.0051

Publication table (flextable)
sig_stars <- function(p){
 ifelse(is.na(p), "",
 ifelse(p < .001, "***",
 ifelse(p < .01, "**",
 ifelse(p < .05, "*",
 ifelse(p < .10, "·", "")))))
}

pub_tab <- wilcoxon_results %>%
 mutate(
 `n pairs` = n_pairs,
 `Median Δ (S2S3−S1)` = round(median_diff, 3),
 `p (one-sided)` = paste0(p_fmt, " ", sig_stars(ifelse(p_fmt == "< 2e-16", 1e-16, as.numeric(p_value))))
) %>%
 select(Task, Bias, Instruction, Direction, `n pairs`, `Median Δ (S2S3−S1)`, W, `p (one-sided)`)

ft <- pub_tab %>%
 flextable() %>%
 autofit() %>%
 align(part = "all", align = "center") %>%
 bold(i = ~ grepl("*+", `p (one-sided)`), j = "p (one-sided)", bold = TRUE) %>%
 color(i = ~ grepl("*+", `p (one-sided)`), j = "p (one-sided)", color = "forestgreen") %>%
 color(i = ~ grepl("·", `p (one-sided)`), j = "p (one-sided)", color = "darkorange") %>%
 set_caption("Directional Wilcoxon (paired by dyad): S2+S3 pooled vs S1 (all DisX kept)")

ft
Directional Wilcoxon (paired by dyad): S2+S3 pooled vs S1 (all DisX kept)
	Task
	Bias
	Instruction
	Direction
	n pairs
	Median Δ (S2S3−S1)
	W
	p (one-sided)

	T1
	20
	L
	Expected < 0
	21
	-48.240
	53
	0.0156 *

	T1
	20
	R
	Expected > 0
	22
	37.724
	189
	0.0221 *

	T1
	30
	L
	Expected < 0
	23
	-31.002
	52
	0.0047 **

	T1
	30
	R
	Expected > 0
	22
	15.752
	172
	0.0720 ·

	T2
	20
	L
	Expected < 0
	19
	-80.316
	41
	0.0157 *

	T2
	20
	R
	Expected > 0
	19
	108.498
	148
	0.0173 *

	T2
	30
	L
	Expected < 0
	19
	-37.740
	29
	0.0042 **

	T2
	30
	R
	Expected > 0
	18
	74.436
	145
	0.0051 **

