Courbes normalisées de PXpi en fonction de DisX (Bias = 20° vs 30°)
Lenay
Table of Contents
Paramètres	1
Packages	2
Import des données	2
Option A — Courbe binned (moyenne de PXpi par bande de DisX)	4
Option B — Lissage LOESS (PXpi ~ DisX)	5
Densité pondérée (optionnel)	6
Courbes normalisées par Session (2 courbes: Bias 20° vs 30°)	8
Export des figures	9
Notes & variantes	10

[bookmark: paramètres][bookmark: _Toc218986431]Paramètres
· Chemin du fichier : mettez à jour data_path si besoin.
· Cette analyse trace la courbe de présence de PXpi en fonction de DisX, avec une courbe par Session (S1, S2, S3).
· Deux approches complémentaires sont proposées :
0. Courbe binned (moyenne de PXpi par bande de DisX)
0. Lissage LOESS (PXpi ~ DisX)
Chemin du fichier d'exemple fourni
Remplacez par votre chemin réel si nécessaire
data_path <- "Study1_Data_a.csv" # le fichier peut être au même niveau que ce .Rmd

Taille des binnings sur DisX (en unités de DisX)
bin_width <- 20

Couleurs (optionnel) — laisser NULL pour palette ggplot par défaut
palette_manual <- NULL
[bookmark: packages][bookmark: _Toc218986432]Packages
Installation (décommenter si nécessaire)
install.packages(c("data.table", "tidyverse", "scales"))

library(data.table)
library(tidyverse)
library(scales)
[bookmark: import-des-données][bookmark: _Toc218986433]Import des données
On utilise data.table::fread() qui détecte automatiquement le séparateur (, ou ;).
Lecture robuste (auto-détection du séparateur)
dt <- fread(data_path)

Aperçu des noms bruts
cat("Noms de colonnes lus :
"); print(names(dt))
Noms de colonnes lus :
[1] "Binome" "Session" "Trial" "Subject" "Bias" "DisX" "PXpg"
[8] "PXpi" "VXg" "VXi" "AXg" "AXi"
Normalisation robuste des noms de colonnes
raw_names <- names(dt)
clean_names <- raw_names |>
 iconv(from = "UTF-8", to = "ASCII//TRANSLIT") |>
 trimws() |>
 tolower() |>
 gsub("[^a-z0-9]+", "_", x = _) |>
 gsub("_+", "_", x = _) |>
 gsub("^_|_$", "", x = _)
setnames(dt, clean_names)

Fonction d'aide pour trouver une colonne parmi plusieurs alias
pick_col <- function(cands, nm) {
 hit <- cands[cands %in% nm]
 if (length(hit) > 0) return(hit[1])
 for (c in cands) {
 f <- agrep(c, nm, max.distance = 0.1, value = TRUE)
 if (length(f) > 0) return(f[1])
 }
 return(NA_character_)
}

nm <- names(dt)
col_disx <- pick_col(c("disx","dis_x","x","position_x","posx"), nm)
col_pxpi <- pick_col(c("pxpi","px_pi","presence","weight","w"), nm)
col_session <- pick_col(c("session","sess","phase"), nm)
col_bias <- pick_col(c("bias","biais","angle"), nm) # ici Bias = 20/30°

missing <- c()
if (is.na(col_disx)) missing <- c(missing, "DisX")
if (is.na(col_pxpi)) missing <- c(missing, "PXpi")
if (is.na(col_session)) missing <- c(missing, "Session")
if (is.na(col_bias)) missing <- c(missing, "Bias")

if (length(missing) > 0) {
 stop(sprintf(
 "Colonnes manquantes: %s. Noms disponibles après nettoyage: [%s]
Astuce: vérifiez les espaces, accents, ou séparateur du CSV.",
 paste(missing, collapse=", "), paste(nm, collapse=", ")
))
}

Renommage standard
setnames(dt, old = c(col_disx, col_pxpi, col_session, col_bias), new = c("disx","pxpi","session","bias"))

Conversion des types
suppressWarnings({
 dt[, disx := as.numeric(disx)]
 dt[, pxpi := as.numeric(pxpi)]
})

Nettoyage des valeurs
if (!is.character(dt$session)) dt[, session := as.character(session)]
dt[, session := toupper(trimws(session))]

Bias peut être 20, 30 ou "20°"/"30°" ; on ne garde que 20/30
if (!is.character(dt$bias)) dt[, bias := as.character(bias)]
dt[, bias := trimws(bias)]
dt[, bias := gsub("[^0-9]+", "", bias)] # garde 20, 30

sessions_cible <- c("S1","S2","S3")
bias_cible <- c("20","30")

dt <- dt[session %in% sessions_cible & bias %in% bias_cible]

dt <- dt[!is.na(disx) & !is.na(pxpi) & !is.na(session) & !is.na(bias)]

DisX va de -2000 à 2000 par pas de 20 : on force un regroupement propre
step <- 20
arrondi au multiple de 20 le plus proche (utile si bruit numérique)
dt[, disx_grp := round(disx / step) * step]

Facteurs
dt[, session := factor(session, levels = sessions_cible)]
dt[, bias := factor(bias, levels = bias_cible, labels = c("20°","30°"))]

Sanity check
stopifnot(all(c("disx","pxpi","session","bias","disx_grp") %in% names(dt)))
[bookmark: X87bcc8e7e645e63ad2696f0c63fce940fc4df8b][bookmark: _Toc218986434]Option A — Courbe binned (moyenne de PXpi par bande de DisX)
Cette approche discrétise l’axe DisX en bandes de largeur bin_width, puis calcule pour chaque bande et pour chaque Session :
· mean_pxpi = moyenne de PXpi (présence moyenne)
· n = effectif dans la bande (utile pour transparence/diagnostic)
Construire les bandes de DisX
a <- range(dt$disx, na.rm = TRUE)
breaks <- seq(floor(a[1]), ceiling(a[2]), by = bin_width)
if (length(breaks) < 3) breaks <- pretty(dt$disx, n = 20)

Pré-calcul des milieux de bandes (plus robuste que de parser le facteur)
break_mids <- head(breaks, -1) + diff(breaks)/2

Binning
cut_bins <- cut(dt$disx, breaks = breaks, include.lowest = TRUE, right = FALSE)

dt_bins <- dt %>%
 mutate(bin = cut_bins, bin_id = as.integer(cut_bins)) %>%
 filter(!is.na(bin_id)) %>%
 group_by(session, bin_id) %>%
 summarise(
 mean_pxpi = mean(pxpi, na.rm = TRUE),
 n = dplyr::n(),
 .groups = "drop"
) %>%
 mutate(mid_disx = break_mids[bin_id])

Plot binned
p_binned <- ggplot(dt_bins, aes(x = mid_disx, y = mean_pxpi, color = session)) +
 geom_line(linewidth = 1) +
 geom_point(aes(size = n), alpha = 0.6, show.legend = TRUE) +
 scale_size_continuous(name = "N par bande", range = c(0.5, 3)) +
 labs(
 title = "Présence moyenne (PXpi) en fonction de DisX — par Session",
 subtitle = paste0("Binning de ", bin_width, " unités de DisX"),
 x = "DisX",
 y = "PXpi (moyenne par bande)",
 color = "Session"
) +
 theme_minimal(base_size = 12)

if (!is.null(palette_manual)) {
 p_binned <- p_binned + scale_color_manual(values = palette_manual)
}

p_binned
[image: Study1-Courbes-PXpi-DisX_files/figure-docx/binned-1.png]
[bookmark: option-b-lissage-loess-pxpi-disx][bookmark: _Toc218986435]Option B — Lissage LOESS (PXpi ~ DisX)
Le lissage LOESS permet de tracer une courbe continue de la tendance de PXpi en fonction de DisX, pour chaque Session.
Remarque : si PXpi est une probabilité ou une présence bornée entre 0 et 1, vous pouvez envisager un lissage logit ou une GAM binomiale. Ici on illustre un LOESS simple (non pondéré). Si vous souhaitez pondérer par PXpi lui-même ou une autre variable, adaptez weights = ... dans geom_smooth().
p_loess <- ggplot(dt, aes(x = disx, y = pxpi, color = session)) +
 geom_point(alpha = 0.15, size = 0.6) +
 geom_smooth(method = "loess", se = FALSE, span = 0.4, linewidth = 1) +
 labs(
 title = "Courbe lissée de PXpi en fonction de DisX — par Session",
 subtitle = "LOESS (span = 0.4) ; points translucides = données brutes",
 x = "DisX",
 y = "PXpi",
 color = "Session"
) +
 theme_minimal(base_size = 12)

if (!is.null(palette_manual)) {
 p_loess <- p_loess + scale_color_manual(values = palette_manual)
}

p_loess
[image: Study1-Courbes-PXpi-DisX_files/figure-docx/loess-1.png]
[bookmark: densité-pondérée-optionnel][bookmark: _Toc218986436]Densité pondérée (optionnel)
Si vous souhaitez une vision globale de la répartition de DisX pondérée par PXpi, vous pouvez utiliser un estimateur de densité pondérée.
Densité de DisX pondérée par PXpi — robuste aux sessions avec PXpi <= 0 ou NA
set.seed(123)
N <- min(5e4, nrow(dt))

Fonction utilitaire: renvoie un tibble(disx_w) pour une session
sample_session <- function(df) {
 df <- df %>% filter(!is.na(disx))
 if (nrow(df) == 0) return(tibble(disx_w = numeric(0)))
 w <- df$pxpi
 # Nettoyage des poids: NA -> 0, négatifs -> 0
 w[is.na(w) | w < 0] <- 0
 s <- sum(w)
 if (s <= 0) {
 # aucun poids strictement positif -> uniforme
 p <- rep(1 / nrow(df), nrow(df))
 } else {
 p <- w / s
 # sécurité: si tout < eps (arrondi), repasser uniforme
 if (sum(p > 0) == 0) p <- rep(1 / nrow(df), nrow(df))
 }
 k <- min(N, nrow(df))
 idx <- sample.int(n = nrow(df), size = k, replace = TRUE, prob = p)
 tibble(disx_w = df$disx[idx])
}

sampled <- dt %>%
 group_by(session) %>%
 group_modify(~ sample_session(.x)) %>%
 ungroup()

p_dens <- ggplot(sampled, aes(x = disx_w, color = session, fill = session)) +
 geom_density(alpha = 0.2) +
 labs(
 title = "Densité de DisX pondérée par PXpi — par Session",
 x = "DisX",
 y = "Densité pondérée"
) +
 theme_minimal(base_size = 12)

if (!is.null(palette_manual)) {
 p_dens <- p_dens + scale_fill_manual(values = palette_manual) +
 scale_color_manual(values = palette_manual)
}

p_dens
[image: Study1-Courbes-PXpi-DisX_files/figure-docx/density-weighted-1.png]
[bookmark: X7a8fe0c3528b589801d031a920512ebc9f170c3][bookmark: _Toc218986437]Courbes normalisées par Session (2 courbes: Bias 20° vs 30°)
L’ordonnée est la somme de PXpi à chaque DisX (ici disx_grp, multiple de 20) divisée par la somme totale de PXpi du couple (Session, Bias). Sur un même panneau Session, on affiche deux courbes (Bias 20° et 30°).
Dénominateur par (Session, Bias)
denoms <- dt %>%
 group_by(session, bias) %>%
 summarise(den_pxpi = sum(pxpi, na.rm = TRUE), .groups = "drop")

Numérateur par (Session, Bias, DisX)
numers <- dt %>%
 group_by(session, bias, disx_grp) %>%
 summarise(num_pxpi = sum(pxpi, na.rm = TRUE), .groups = "drop")

plot_df <- numers %>%
 left_join(denoms, by = c("session","bias")) %>%
 mutate(y_norm = ifelse(den_pxpi > 0, num_pxpi / den_pxpi, NA_real_))

Un graphique par Session (facets lignes), deux courbes par panneau (couleur = Bias)
p_norm <- ggplot(plot_df, aes(x = disx_grp, y = y_norm, color = bias)) +
 geom_line(linewidth = 1) +
 facet_wrap(~ session, ncol = 1, scales = "free_y") +
 labs(
 title = "Courbes normalisées de présence (PXpi) vs DisX",
 subtitle = "Ordonnée = Somme PXpi@DisX / Somme totale PXpi du couple (Session, Bias)",
 x = "DisX (pas = 20)",
 y = "Présence normalisée",
 color = "Bias"
) +
 scale_y_continuous(labels = scales::percent_format(accuracy = 0.1)) +
 theme_minimal(base_size = 12)

if (!is.null(palette_manual)) {
 p_norm <- p_norm + scale_color_manual(values = palette_manual)
}

p_norm
[image: Study1-Courbes-PXpi-DisX_files/figure-docx/normalized-1.png]
[bookmark: export-des-figures][bookmark: _Toc218986438]Export des figures
dir.create("figures", showWarnings = FALSE)

ggsave("figures/presence_binned_par_session.png", p_binned, width = 10, height = 5, dpi = 150)

ggsave("figures/presence_loess_par_session.png", p_loess, width = 10, height = 5, dpi = 150)

ggsave("figures/densite_disx_ponderee_par_session.png", p_dens, width = 10, height = 5, dpi = 150)
[bookmark: notes-variantes][bookmark: _Toc218986439]Notes & variantes
· Binning : ajustez bin_width selon l’échelle de DisX (par ex. 5, 10, 20, 50, …).
· Lissage : modifiez span (plus petit = plus ondulé ; plus grand = plus lisse). Pour de très grands jeux de données, préférez method = "gam" avec formula = y ~ s(x, k = ...).
· Pondération : si vous avez une variable de poids distincte (p. ex. PXpi_att), ajoutez weights = cette_variable dans geom_smooth().
· Filtrage : si certaines sessions sont rares, vous pouvez filtrer les bandes avec n faible dans le tracé binned.
· Facettes : pour des tracés séparés par Session, utilisez facet_wrap(~ session, ncol = 1).
image1.png
&

PXpi (moyenne par bande)

®

Présence moyenne (PXpi) en fonction de DisX — par Session
Binning de 20 unités de DisX

Session
- 51
—- 52
—~ s3

N par bande

150

B

-2000 -1000 0 1000
DisX

2000

image2.png
PXpi

750

500

250

Courbe lissée de PXpi en fonction de DisX — par Session
LOESS (span = 0.4) ; points translucides = données brutes

-2000 -1000 0

2000

Session

— s2
— s3

image3.png
0.0025

0.0020

0.0015

0.0010

Densité pondérée

0.0005

0.0000

Densité de DisX pondérée par PXpi — par Session

-2000

-1000

DisX

1000

2000

image4.png
Courbes normalisées de présence (PXpi) vs DisX
Ordonnée = Somme PXpi@DisX / Somme totale PXpi du couple (Session, Bias)

st

-2000 -1000 0 1000
DisX (pas = 20)

2000

Bias
—
— 3

